Effects of membrane cholesterol manipulation on excitation-contraction coupling in skeletal muscle of the toad

J Physiol. 2001 Jul 1;534(Pt 1):71-85. doi: 10.1111/j.1469-7793.2001.00071.x.

Abstract

1. Single mechanically skinned fibres and intact bundles of fibres from the twitch region of the iliofibularis muscle of cane toads were used to investigate the effects of membrane cholesterol manipulation on excitation-contraction (E-C) coupling. The cholesterol content of membranes was manipulated with methyl-beta-cyclodextrin (MbetaCD). 2. In mechanically skinned fibres, depletion of membrane cholesterol with MbetaCD caused a dose- and time-dependent decrease in transverse tubular (t)-system depolarization-induced force responses (TSDIFRs). TSDIFRs were completely abolished within 2 min in the presence of 10 mM MbetaCD but were not affected after 2 min in the presence of a 10 mM MbetaCD-1 mM cholesterol complex. There was a very steep dependence between the change in TSDIFRs and the MbetaCD : cholesterol ratio at 10 mM MbetaCD, indicating that the inhibitory effect of MbetaCD was due to membrane cholesterol depletion and not to a pharmacological effect of the agent. Tetanic responses in bundles of intact fibres were abolished after 3-4 h in the presence of 10 mM MbetaCD. 3. The duration of TSDIFRs increased markedly soon (< 2 min) after application of 10 mM MbetaCD and 10 mM MbetaCD-cholesterol complexes, but the Ca(2+) activation properties of the contractile apparatus were minimally affected by 10 mM MbetaCD. The Ca(2+) handling abilities of the sarcoplasmic reticulum appeared to be modified after 10 min exposure to 10 mM MbetaCD. 4. Confocal laser scanning microscopy revealed that the integrity of the t-system was not compromised by either intra- or extracellular application of 10 mM MbetaCD and that a large [Ca(2+)] gradient was maintained across the t-system. 5. Membrane cholesterol depletion caused rapid depolarization of the polarized t-system as shown independently by spontaneous TSDIFRs induced by MbetaCD and by changes in the fluorescence intensity of an anionic potentiometric dye (DiBAC(4)(3)) in the presence of MbetaCD. This rapid depolarization of the t-system by cholesterol depletion was not prevented by blocking the Na(+) channels with TTX (10 microM) or the L-type Ca(2+) channels with Co(2+) (5 mM). 6. The results demonstrate that cholesterol is important for maintaining the functional integrity of the t-system and sarcoplasmic reticulum, probably by having specific effects on different membrane proteins that may be directly or indirectly involved in E-C coupling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bufo marinus
  • Calcium / metabolism
  • Calcium Channels / physiology
  • Cell Membrane / metabolism
  • Cholesterol / metabolism*
  • Cyclodextrins / pharmacology
  • Electric Stimulation
  • Electrophysiology
  • Intracellular Membranes / metabolism
  • Membrane Potentials / drug effects
  • Muscle Contraction / drug effects
  • Muscle Contraction / physiology*
  • Muscle Fibers, Skeletal / drug effects
  • Muscle Fibers, Skeletal / physiology
  • Muscle, Skeletal / drug effects
  • Muscle, Skeletal / physiology*
  • Osmolar Concentration
  • Sarcoplasmic Reticulum / drug effects
  • Sarcoplasmic Reticulum / physiology
  • Sodium Channels / physiology
  • beta-Cyclodextrins*

Substances

  • Calcium Channels
  • Cyclodextrins
  • Sodium Channels
  • beta-Cyclodextrins
  • methyl-beta-cyclodextrin
  • Cholesterol
  • Calcium