Interaction between organic vapors and clinoptilolite-mordenite rich tuffs in parent, decationized, and lead exchanged forms

J Colloid Interface Sci. 2007 Aug 15;312(2):317-25. doi: 10.1016/j.jcis.2007.02.076. Epub 2007 Apr 30.

Abstract

Scientific interest in adsorption phenomena of organic vapors has concentrated on synthetic zeolites. Solid-vapor systems containing natural zeolites deserve special attention due to their abundance and environmental applications. Adsorption thermodynamic characteristics for benzene, toluene, n-hexane, and CCl(4) were measured on clinoptilolite-rich zeolitic tuffs from Mexico (ZE) and Hungary (ZH) on parent, decationized, dealuminated, and lead-exchanged samples. The clinoptilolite structure released Na(+) and Ca(2+) by acid treatment and this was accompanied by dealumination to a greater extent on ZE than on ZH. The exchange isotherm of Pb(2+) on ZE exhibited a concave type "a" form and accomplished 95% exchange and the tuff was selective at X(i(s))<0.25. The pattern of adsorption isotherms was the same on all tuffs: benzene>toluene>n-hexane>carbon tetrachloride. The -DeltaH values were higher for toluene than for the other adsorbates. Curves of q(isost) vs coverage decreased with the increment of the adsorbed amount in practically all studied systems. The contributions to the solid-vapor interaction potential were examined using inverse gas chromatography. The specific interaction energy G(sp) was primarily due to adsorbate-framework and adsorbate-cation interactions at low adsorbate pressures producing low surface coverage.