Cudraflavanone A, a flavonoid isolated from the root bark of Cudrania tricuspidata, inhibits vascular smooth muscle cell growth via an Akt-dependent pathway

Planta Med. 2007 Sep;73(11):1163-8. doi: 10.1055/s-2007-981584. Epub 2007 Aug 23.

Abstract

In previous studies of the root bark of Cudrania tricuspidata, various isoprenylated xanthones and flavonoids were isolated, some of which have anticancer, hepatoprotective, and antiperoxidative activities. Cytokines and growth factors are involved in the regulation of vascular smooth muscle cells (VSMCs) in atherosclerotic plaques. To assess whether cudraflavanone A isolated from the root bark of C. tricuspidata may be useful in the prevention of atherosclerosis or restenosis after angioplasty, we investigated the ability of cudraflavanone A to inhibit VSMCs growth under 25 ng/mL platelet-derived growth factor BB (PDGF-BB)-stimulated conditions. Cudraflavanone A (0.1-1 microM) significantly inhibited PDGF-BB-induced cell numbers in a concentration-dependent manner. The antigrowth effects of cudraflavanone A on VSMCs were also examined in [3H]-thymidine incorporation and cell cycle assays. Consistent with the inhibitory effect on cell number, PDGF-BB-stimulated [3H]-thymidine incorporation and cell cycle progression in VSMCs was also concentration-dependently reduced by cudraflavanone A. Furthermore, PDGF-BB markedly activated PDGF-beta receptor (PDGF-Rbeta) tyrosine kinase activity, leading to activation of intracellular signals required for VSMC growth. However, PDGF-BB-induced this kinase activity was not affected by cudraflavanone A. PDGF-BB also increased the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), Akt, and phospholipase C gamma (PLCgamma)1, which are important signaling molecules in cell growth. Cudraflavanone A (0.1-1 microM) suppressed PDGF-BB-stimulated Akt activation, which is involved in cell survival, but had no effect on the activation of ERK1/2 and PLCgamma1. Selective modification of Akt activation by cudraflavanone A in VSMCs may suppress intimal thickening after angioplasty and plaque formation in atherosclerosis. These results suggest that cudraflavanone A from C. tricuspidata inhibits PDGF-BB-induced rat aortic VSMC growth via an Akt-dependent pathway.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta / cytology
  • Cell Proliferation / drug effects*
  • Cells, Cultured / drug effects
  • Flavanones / administration & dosage
  • Flavanones / pharmacology*
  • Flavanones / therapeutic use
  • Flavones / administration & dosage
  • Flavones / pharmacology
  • Flavones / therapeutic use
  • Moraceae*
  • Muscle, Smooth, Vascular / cytology
  • Muscle, Smooth, Vascular / drug effects*
  • Phytotherapy*
  • Plant Extracts / administration & dosage
  • Plant Extracts / pharmacology*
  • Plant Extracts / therapeutic use
  • Plant Roots
  • Proto-Oncogene Proteins c-akt / metabolism*
  • Rats

Substances

  • Flavanones
  • Flavones
  • Plant Extracts
  • cudraflavanone A
  • Proto-Oncogene Proteins c-akt