HIV-1 neutralization by monoclonal antibody against conserved region 2 and patterns of epitope exposure on the surface of native viruses

J Immune Based Ther Vaccines. 2009 Oct 12:7:5. doi: 10.1186/1476-8518-7-5.

Abstract

Background: Conserved neutralizing epitopes are considered to be a key role for eliciting broadly neutralizing antibody (NAb). Previously, two conserved neutralizing epitopes of HIV-1 CRF01_AE envelope were identified at amino acid 93-112 of the C1 (C1E) and at 218-239 of the C2 (C2E) regions. To access the potency of antibody directed against conserved epitopes, a monoclonal antibody (MAb) specific to the C2E region was developed and characterized.

Methods: The immunogenicity of two epitopes was examined by immunizing BALB/c mice with the matching synthetic peptides. One MAb, C2EB5, directed against peptide C2E, was generated by conventional methods, while C1E1 and C1E2 peptides induced slight antibody response in mice. The neutralizing activity of MAb C2EB5 was examined using a peripheral blood mononuclear cell (PBMC) based method and various HIV-1 subtypes including A, B, C, D, and CRF01_AE; C2EB5 was compared with other known neutralizing MAbs (4E10, 447-52D) and with sCD4. The exposure of the C2 epitope on native virus was investigated using virus capture by these MAbs.

Results: The MAb C2EB5 demonstrated cross-neutralization against various HIV-1 subtypes. The overall potency of MAb C2EB5 against 5 subtypes was ranked in the following order: subtype C> CRF01_AE> subtype D> subtype A> subtype B. The epitope exposure for MAb C2EB5 was also correlated with the neutralization properties of each subtype.

Conclusion: This study demonstrates the cross-clade neutralizing activity of a MAb directed against an epitope located in the C2 region of the HIV-1 env and highlights differences in the exposure of antigenic epitopes on the surface of various HIV-1 subtypes. The epitope for this newly identified neutralizing MAb made against a subtype CRF01_AE peptide is particularly exposed in subtype C viral isolates.