Stability of Early Auditory Evoked Potential Components Over Extended Test-Retest Intervals in Young Adults

Ear Hear. 2020 Nov/Dec;41(6):1461-1469. doi: 10.1097/AUD.0000000000000872.

Abstract

Objectives: Synaptic damage from noise exposures can occur even in the absence of changes in hearing sensitivity in animal models. There is an unmet clinical need for measurements sensitive to such damage to the human auditory system that can augment the pure-tone audiogram. Early components (i.e., <10 msec) of the auditory evoked potential (AEP) may be useful noninvasive indicators of synaptic integrity. Wave I is a measure of synchronous neural activity at the level of the synapse between cochlear inner hair cells and the auditory nerve and may be of particular clinical utility. This amplitude measure has historically been classified as too variable in humans to be used for clinical waveform interpretation, though several recent reliability studies have challenged this view. The focus of the present study is to examine across-session stability of early AEP amplitude measures.

Design: In this study, amplitudes of early components (wave I, wave V, summating potential [SP]) of the AEP were measured in a cohort of 38 young adults aged 19 to 33 years (21 female). Stability of these amplitude measures was examined in a subset of 12 young adults (8 female), at time intervals ranging from 15 hr to 328 days between tests. Eligibility criteria included normal pure-tone hearing sensitivity, normal tympanometry, and intact acoustic reflexes. Participants were tested at up to four time points. Each evaluation included pure-tone thresholds, tympanometry, speech-in-noise testing, distortion-product otoacoustic emissions (DPOAE), and early AEPs. AEPs were collected in response to click and tone burst stimuli, with both ear canal and mastoid electrode montages.

Results: No clinical changes in pure-tone hearing were found between baseline and follow-up visits. Intraclass correlation coefficients (ICCs) indicated good to excellent reliability for wave I and wave V peak-to-trough amplitudes within individuals across time, with greatest reliability (0.92, 95% confidence interval [0.81 to 0.96]) and largest amplitudes for wave I when measured from the ear canal in response to a click stimulus. Other measures such as amplitude ratios of waves V/I and the SP and action potential (AP) showed lower ICC values when measured from the ear canal, with SP/AP ratio demonstrating the lowest reliability.

Conclusions: The results of this study suggest that, when recorded under certain conditions, wave I amplitude can be a stable measure in humans. These findings are consistent with previous work and may inform the development of clinical protocols that utilize wave I amplitude to infer inner ear integrity.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Audiometry, Pure-Tone
  • Auditory Threshold
  • Evoked Potentials, Auditory*
  • Evoked Potentials, Auditory, Brain Stem*
  • Female
  • Humans
  • Otoacoustic Emissions, Spontaneous
  • Reproducibility of Results
  • Young Adult