Darter fishes exhibit variable intraspecific head shape allometry and modularity

Anat Rec (Hoboken). 2023 Feb;306(2):446-456. doi: 10.1002/ar.25088. Epub 2022 Oct 11.

Abstract

Allometry, the relationship between anatomical proportions and body size, may either limit or facilitate the diversification of morphology. We examined the impact of allometry in darter fish morphology, which displays a variety of trophic morphologies. This study aimed to address (a) whether there was significant variation in darter head allometry, (b) if allometry contributed to head shape diversity in adults, and (c) if darters show head shape modularity associated with allometry. We used geometric morphometrics to quantify head shape across 10 different species and test for heterogeneity in allometric slopes. In addition, we quantified the degree of modularity between the preorbital and postorbital regions of the darter head, both before and after correction for body size. We found that different species have unique allometric slopes, particularly among the Simoperca subgenus, and that closely related darter species tend to show ontogenetic divergence, contributing to the diversity of head shapes observed in adults. We suggest that such a pattern may result from the similarity of juvenile diets due to gape limitation. We also found that several species show significant modularity in head shape but that modularity was evolutionarily labile and only sometimes impacted by head shape allometry. Overall, our work suggests that ontogenetic shape development may have been important to the evolution of head shape in darters, particularly in the evolution of foraging traits and microhabitat.

Keywords: Etheostomatinae; Percidae; ecomorphology; geometric morphometrics; ontogeny.

MeSH terms

  • Animals
  • Biological Evolution*
  • Body Size
  • Fishes*