Jejunal bypass stimulation of pancreatic growth and cholecystokinin secretion in rats: importance of luminal nutrients

Gut. 1987;28 Suppl(Suppl):25-9. doi: 10.1136/gut.28.suppl.25.

Abstract

The effect of jejunal bypass on pancreatic growth and plasma cholecystokinin (CCK) was investigated in rats. Rats underwent bypass of jejunum or sham operation. Rats with jejunal bypass were further divided into three groups; one group received a continuous infusion of a partially hydrolysed liquid diet (Vital) into the bypassed jejunum; a second group received the nutrient solution mixed with trypsin and infused into the bypassed jejunum; the third bypass group did not receive infusion of nutrient or trypsin into the jejunum. Jejunal bypass alone did not significantly stimulate pancreatic growth or DNA content at one or two weeks postoperative. Infusion of nutrient solution into the bypassed jejunum stimulated pancreatic growth and DNA content, with maximal increases of 185% and 181% for pancreatic weight and DNA content, respectively, at two weeks. This coincided with significant increases in postabsorptive plasma CCK concentrations. Infusion of pancreatic proteases into the bypassed jejunum partially reversed the effects of nutrient infusion. These results suggest that exclusion of bile-pancreatic juice or pancreatic proteases from the jejunum does not lead to maximal release of CCK unless the jejunum receives luminal nutrients. It is proposed that CCK release from rat jejunum occurs spontaneously in the absence of pancreatic proteases, and that luminal nutrients in bypassed jejunum increase plasma CCK and stimulate pancreatic growth by maintaining synthesis of CCK.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cholecystokinin / blood*
  • Cholecystokinin / metabolism
  • Food, Formulated
  • Gastrointestinal Contents
  • Jejunoileal Bypass*
  • Jejunum / metabolism
  • Male
  • Organ Size
  • Pancreas / pathology*
  • Rats
  • Rats, Inbred Strains

Substances

  • Cholecystokinin