Antagonistic interactions between odorants alter human odor perception

Curr Biol. 2023 Jun 5;33(11):2235-2245.e4. doi: 10.1016/j.cub.2023.04.072. Epub 2023 May 22.

Abstract

The olfactory system uses hundreds of odorant receptors (ORs), the largest group of the G-protein-coupled receptor (GPCR) superfamily, to detect a vast array of odorants. Each OR is activated by specific odorous ligands, and like other GPCRs, antagonism can block activation of ORs. Recent studies suggest that odorant antagonisms in mixtures influence olfactory neuron activities, but it is unclear how this affects perception of odor mixtures. In this study, we identified a set of human ORs activated by methanethiol and hydrogen sulfide, two potent volatile sulfur malodors, through large-scale heterologous expression. Screening odorants that block OR activation in heterologous cells identified a set of antagonists, including β-ionone. Sensory evaluation in humans revealed that β-ionone reduced the odor intensity and unpleasantness of methanethiol. Additionally, suppression was not observed when methanethiol and β-ionone were introduced simultaneously to different nostrils. Our study supports the hypothesis that odor sensation is altered through antagonistic interactions at the OR level.

Keywords: antagonist; cAMP; chemical senses; chemosensory; deodorant; inverse agonist; olfaction; olfactory psychophysics; olfactory receptor.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Humans
  • Odorants
  • Olfactory Perception* / physiology
  • Olfactory Receptor Neurons* / physiology
  • Perception
  • Receptors, Odorant* / metabolism
  • Smell / physiology

Substances

  • beta-ionone
  • methylmercaptan
  • Receptors, Odorant