Variability in genome size of Trigonella foenum-graecum, Trigonella corniculata and Trigonella caerulea as estimated by flow cytometry indicates complex evolutionary history of fenugreek

Mol Biol Rep. 2024 Apr 5;51(1):489. doi: 10.1007/s11033-024-09417-5.

Abstract

Background: The determination of genome size is a fundamental step which provides a basis to initiate studies aimed at deciphering the genetic similarity of a species and to carry out other genomics based investigations. Fenugreek (Trigonella spp.) is an important spice crop which has numerous health promoting phytochemicals. Many species within this genus are known for their various health benefits owing to the presence of a wide diversity of important phytochemicals like diosgenin, trigonelline, fenugreekine, galactomannan, 4-hydroxy isoleucine, etc. It is a multipurpose crop being cultivated for food, animal feed and industrial purposes. Despite its importance, research on the genomics aspect of fenugreek remains scant. In the absence of sufficient genomic information, crop improvement in fenugreek is severely lagging.

Methods and results: Estimation of genome size of a species is the preliminary step for initiation of any genomic studies and therefore in the present study we have estimated the genome size for fenugreek. Here, we have determined the genome sizes of three different Trigonella spp. namely T. foenum-graecum, T. corniculata and T. caerulea through flow cytometry (FC). The 2 C DNA content values were found to be 6.05 pg (T. foenum-graecum), 1.83 pg (T. corniculata) and 1.96 pg (T. caerulea). The genome size of T. foenum-graecum is approximately three times the genome size of T. corniculata and T. caerulea. This variation in genome size of more than three-fold indicates the level of genetic divergence among the three species, though within the same genus.

Conclusions: The differences observed in the genome sizes of the three species provide conclusive evidence of their genetic divergence. Additionally, the information about the genome size would provide an impetus to the structural and functional genomics-based research in this crop.

Keywords: T. caerulea; T. corniculata; T. foenum-graecum; 2 C DNA content; Flow cytometry; Genome size.

MeSH terms

  • Animals
  • Biological Evolution
  • Flow Cytometry
  • Genome Size
  • Plant Extracts
  • Trigonella* / chemistry
  • Trigonella* / genetics

Substances

  • Plant Extracts