Correlation between desynchrony of hippocampal neural activity and hyperlocomotion in the model mice of schizophrenia and therapeutic effects of aripiprazole

CNS Neurosci Ther. 2024 May;30(5):e14739. doi: 10.1111/cns.14739.

Abstract

Aims: The hippocampus has been reported to be morphologically and neurochemically altered in schizophrenia (SZ). Hyperlocomotion is a characteristic SZ-associated behavioral phenotype, which is associated with dysregulated dopamine system function induced by hippocampal hyperactivity. However, the neural mechanism of hippocampus underlying hyperlocomotion remains largely unclear.

Methods: Mouse pups were injected with N-methyl-D-aspartate receptor antagonist (MK-801) or vehicle twice daily on postnatal days (PND) 7-11. In the adulthood phase, one cohort of mice underwent electrode implantation in field CA1 of the hippocampus for the recording local field potentials and spike activity. A separate cohort of mice underwent surgery to allow for calcium imaging of the hippocampus while monitoring the locomotion. Lastly, the effects of atypical antipsychotic (aripiprazole, ARI) were evaluated on hippocampal neural activity.

Results: We found that the hippocampal theta oscillations were enhanced in MK-801-treated mice, but the correlation coefficient between the hippocampal spiking activity and theta oscillation was reduced. Consistently, although the rate and amplitude of calcium transients of hippocampal neurons were increased, their synchrony and correlation to locomotion speed were disrupted. ARI ameliorated perturbations produced by the postnatal MK-801 treatment.

Conclusions: These results suggest that the disruption of neural coordination may underly the neuropathological mechanism for hyperlocomotion of SZ.

Keywords: aripiprazole; hippocampus; hyperlocomotion; neural activity; schizophrenia.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Newborn
  • Antipsychotic Agents* / pharmacology
  • Antipsychotic Agents* / therapeutic use
  • Aripiprazole* / pharmacology
  • Aripiprazole* / therapeutic use
  • Disease Models, Animal*
  • Dizocilpine Maleate* / pharmacology
  • Excitatory Amino Acid Antagonists / pharmacology
  • Hippocampus* / drug effects
  • Hyperkinesis* / drug therapy
  • Locomotion / drug effects
  • Locomotion / physiology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neurons / drug effects
  • Schizophrenia* / drug therapy
  • Theta Rhythm / drug effects
  • Theta Rhythm / physiology

Substances

  • Aripiprazole
  • Antipsychotic Agents
  • Dizocilpine Maleate
  • Excitatory Amino Acid Antagonists