Effect of circumferential plasma-spray porous coating on the rate of femoral osteolysis after total hip arthroplasty

J Bone Joint Surg Am. 1999 Sep;81(9):1291-8. doi: 10.2106/00004623-199909000-00010.

Abstract

Background: Osteolysis of the femur has been a serious problem associated with some designs of total hip-replacement implants; it frequently leads to failure of the femoral component. We evaluated the effect of a circumferential plasma-spray porous coating on the rate of osteolysis in a study that included two groups of hips, each of which received an implant with the same design except for the extent of the porous coating. Our goal was to determine the possible role of circumferential porous coating in protecting the bone-implant interface from osteolysis.

Methods: A series of consecutive primary total hip replacements performed with insertion of the Mallory-Head implant without cement was divided into two study groups. The first 126 hips (Group 1) were treated with a femoral stem that had a noncircumferential plasma-spray porous titanium coating. The next ninety hips (Group 2) were treated with a circumferentially coated stem of the same design. The average duration of radiographic follow-up was 7.8 years in Group 1 and 7.5 years in Group 2.

Results: The average rate of polyethylene wear was similar for the two groups (0.187 millimeter per year in Group 1 and 0.189 millimeter per year in Group 2). The prevalence of osteolysis in Group 1 (40 percent; fifty of 126 hips) was significantly higher than that in Group 2 (10 percent; nine of ninety hips) (p < 0.001). Osteolysis remote from the joint space (distal to zones 1 and 7) was found in 11 percent (fourteen) of the hips in Group 1 but in none of those in Group 2 (p = 0.0004). The average total area of osteolysis in Group 1 (5.0 square centimeters) was significantly larger than that in Group 2 (2.9 square centimeters) (p < 0.05).

Conclusions: A circumferential plasma-spray titanium porous coating on the femoral component of a total hip-replacement prosthesis inserted without cement appears to provide an effective barrier preventing wear debris from gaining access to the endosteal surface of the femur and the greater trochanter. This finding supports the hypothesis of the so-called effective joint space, which predicts that wear debris from the joint bearing can migrate, driven by intracapsular pressures, to all areas to which joint fluid has access and thus can result in osteolysis. The reduction of the prevalence of osteolysis and the elimination of osteolysis from the zones remote from the joint space by the use of a circumferential plasma-spray porous coating indicates that the femur was effectively sealed off from the joint space. We believe that the durability and longevity of the femoral component should be enhanced by the use of such a coating.

MeSH terms

  • Coated Materials, Biocompatible*
  • Equipment Failure Analysis
  • Female
  • Femur / diagnostic imaging*
  • Follow-Up Studies
  • Hip Prosthesis*
  • Humans
  • Male
  • Middle Aged
  • Osteolysis / diagnostic imaging*
  • Postoperative Complications / diagnostic imaging*
  • Prosthesis Design
  • Radiography

Substances

  • Coated Materials, Biocompatible