Significant conformational changes in an antigenic carbohydrate epitope upon binding to a monoclonal antibody

Biochemistry. 1990 Dec 11;29(49):10906-11. doi: 10.1021/bi00501a007.

Abstract

Transferred nuclear Overhauser enhancement spectroscopy (TRNOE) was used to observe changes in a ligand's conformation upon binding to its specific antibody. The ligands studied were methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-4-fluoro-beta-D-galactopyra nos ide (me4FGal2) and its selectively deuteriated analogue, methyl O-beta-D-galactopyranosyl(1----6)-4-deoxy-2-deuterio-4-fluoro-beta -D- galactopyranoside (me4F2dGal2). The monoclonal antibody was mouse IgA X24. The solution conformation of the free ligand me4F2dGal2 was inferred from measurements of vicinal 1H-1H coupling constants, long-range 1H-13C coupling constants, and NOE cross-peak intensities. For free ligand, both galactosyl residues adopt a regular chair conformation, but the NMR spectra are incompatible with a single unique conformation of the glycosidic linkage. Analysis of 1H-1H and 1H-13C constants indicates that the major conformer has an extended conformation: phi = -120 degrees; psi = 180 degrees; and omega = 75 degrees. TRNOE measurements on me4FGal2 and me4F2dGal2 in the presence of the specific antibody indicate that the pyranose ring pucker of each galactose ring remains unchanged, but rotations about the glycosidic linkage occur upon binding to X24. Computer calculations indicate that there are two sets of torsion angles that satisfy the observed NMR constraints, namely, phi = -152 +/- 9 degrees; psi = -128 +/- 7 degrees; and omega = -158 +/- 6 degrees; and a conformer with phi = -53 +/- 6 degrees; psi = 154 +/- 10 degrees; and omega = -173 +/- 6 degrees. Neither conformation is similar to any of the observed conformations of the free disaccharide.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Antibodies, Monoclonal
  • Antigen-Antibody Complex*
  • Antigen-Antibody Reactions*
  • Disaccharides
  • Epitopes*
  • Galactans / chemistry
  • Galactans / immunology*
  • Immunoglobulins / ultrastructure
  • In Vitro Techniques
  • Ligands
  • Magnetic Resonance Spectroscopy
  • Mice
  • Models, Molecular
  • Molecular Conformation

Substances

  • Antibodies, Monoclonal
  • Antigen-Antibody Complex
  • Disaccharides
  • Epitopes
  • Galactans
  • Immunoglobulins
  • Ligands