Static and statistical bending of DNA evaluated by Monte Carlo simulations

Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7046-50. doi: 10.1073/pnas.88.16.7046.

Abstract

To investigate the influence of thermal fluctuations on DNA curvature the Metropolis procedure at 300 K was applied to B-DNA decamers containing A5.T5 and A4.T4 blocks. Monte Carlo simulations have confirmed the DNA bending anisotropy: B-DNA bends most easily in a groove direction (roll). The A5.T5 block is more rigid than the other sequences; the pyrimidine-purine dimers are found to be the most flexible. For A5TCTCT, A5CTCTC, and A5GAGAG, the average bend angle per decamer is 20-25 degrees in a direction toward the minor groove in the center of the A5.T5 tract, which is consistent with both the "junction" and "wedge AA" models. However, in A5T5, A4T4CG, and T4A4GC, bending is directed into the grooves at the 5' and 3' ends of purine tracts. Thus, directionality of bending caused by An.Tn blocks strongly depends on their neighboring sequences. These calculations demonstrate that the sequence-dependent variation of the minor-groove width mimics the observed hydroxyl radical cleavage pattern. To estimate the effect of fluctuations on the overall shape of curved DNA fragments, longer pieces of DNA (up to 200 base pairs) were generated. For sequences with strong curvature (A5X5 and A4T4CG), the static model and Monte Carlo ensemble give similar results but, for moderately and slightly curved sequences (A5T5 or T4A4GC), the static model predicts a much smaller degree of bending than does the statistical representation. Considering fluctuations is important for quantitative interpretation of the gel electrophoresis measurements of DNA curvature, where both the static and statistical bends are operative.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Base Sequence
  • DNA / chemistry*
  • Hydrogen Bonding
  • Models, Molecular
  • Molecular Sequence Data
  • Monte Carlo Method
  • Nucleic Acid Conformation*
  • Oligodeoxyribonucleotides / chemistry*
  • Structure-Activity Relationship

Substances

  • Oligodeoxyribonucleotides
  • DNA