ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]-oxadiazol-5-yl]-piperidin-1-yl}-methanone]: a novel metabotropic glutamate receptor 5-selective positive allosteric modulator with preclinical antipsychotic-like and procognitive activities

J Pharmacol Exp Ther. 2008 Dec;327(3):827-39. doi: 10.1124/jpet.108.136580. Epub 2008 Aug 27.

Abstract

Positive allosteric modulators (PAMs) of metabotropic glutamate receptor subtype 5 (mGlu5) enhance N-methyl-d-aspartate receptor function and may represent a novel approach for the treatment of schizophrenia. ADX47273 [S-(4-fluoro-phenyl)-{3-[3-(4-fluoro-phenyl)-[1,2,4]oxadiazol-5-yl]-piperidin-1-yl}-methanone], a recently identified potent and selective mGlu5 PAM, increased (9-fold) the response to threshold concentration of glutamate (50 nM) in fluorometric Ca(2+) assays (EC(50) = 170 nM) in human embryonic kidney 293 cells expressing rat mGlu5. In the same system, ADX47273 dose-dependently shifted mGlu5 receptor glutamate response curve to the left (9-fold at 1 microM) and competed for binding of [(3)H]2-methyl-6-(phenylethynyl)pyridine (K(i) = 4.3 microM), but not [(3)H]quisqualate. In vivo, ADX47273 increased extracellular signal-regulated kinase and cAMP-responsive element-binding protein phosphorylation in hippocampus and prefrontal cortex, both of which are critical for glutamate-mediated signal transduction mechanisms. In models sensitive to antipsychotic drug treatment, ADX47273 reduced rat-conditioned avoidance responding [minimal effective dose (MED) = 30 mg/kg i.p.] and decreased mouse apomorphine-induced climbing (MED = 100 mg/kg i.p.), with little effect on stereotypy or catalepsy. Furthermore, ADX47273 blocked phencyclidine, apomorphine, and amphetamine-induced locomotor activities (MED = 100 mg/kg i.p.) in mice and decreased extracellular levels of dopamine in the nucleus accumbens, but not in the striatum, in rats. In cognition models, ADX47273 increased novel object recognition (MED = 1 mg/kg i.p.) and reduced impulsivity in the five-choice serial reaction time test (MED = 10 mg/kg i.p.) in rats. Taken together, these effects are consistent with the hypothesis that allosteric potentiation of mGlu5 may provide a novel approach for development of antipsychotic and procognitive agents.

MeSH terms

  • Allosteric Regulation / drug effects*
  • Animals
  • Antipsychotic Agents / pharmacology*
  • Avoidance Learning / drug effects
  • Brain Chemistry / drug effects
  • Cell Line
  • Cognition / drug effects*
  • Dose-Response Relationship, Drug
  • Drug Evaluation, Preclinical
  • Hippocampus / metabolism
  • Humans
  • Oxadiazoles / pharmacology*
  • Piperidines / pharmacology*
  • Prefrontal Cortex / metabolism
  • Rats
  • Receptor, Metabotropic Glutamate 5
  • Receptors, Metabotropic Glutamate / drug effects*

Substances

  • Antipsychotic Agents
  • Oxadiazoles
  • Piperidines
  • Receptor, Metabotropic Glutamate 5
  • Receptors, Metabotropic Glutamate
  • S-(4-fluorophenyl)-(3-(3-(4-fluorophenyl)-(1,2,4)-oxadiazol-5-yl)piperidin-1-yl)methanone