The molecular organization of the fungal prion HET-s in its amyloid form

J Mol Biol. 2009 Nov 20;394(1):119-27. doi: 10.1016/j.jmb.2009.09.015. Epub 2009 Sep 11.

Abstract

The prion hypothesis states that it is solely the three-dimensional structure of the polypeptide chain that distinguishes the prion and nonprion forms of the protein. For HET-s, the atomic-resolution structure of the isolated prion domain HET-s(218-289), consisting of a highly ordered triangular cross-beta arrangement, is known. Here we present a solid-state NMR study of fibrils of the full-length HET-s prion in which we compare their spectra with spectra from isolated C-terminal prion domain fibrils and the crystalline N-terminal globular domain HET-s(1-227). The spectra reveal unequivocally that the highly ordered structure of the isolated prion domain HET-s(218-289) is conserved in the context of the full-length fibrils investigated here. However, the globular domain loses much of its tertiary structure while partly retaining its secondary structure, thus exhibiting behavior reminiscent of a molten globule. Flexible residues that may constitute the linker connecting the two domains are detected using INEPT (insensitive nuclei enhanced by polarization transfer) spectroscopy. Based on our data, we propose a structural model that is in line with a general model developed for amyloid fibrils built from a cross-beta core decorated with globular domains. The loss of structure in the HET-s globular domain sharply contrasts with the behavior observed for fibrils of Ure2p and suggests that there is considerable structural diversity in the fibrils of globular-domain-containing prions despite their similar appearances at the microscopic level.

MeSH terms

  • Amyloid / chemistry*
  • Conserved Sequence
  • Hydrophobic and Hydrophilic Interactions
  • Magnetic Resonance Spectroscopy
  • Models, Molecular*
  • Prions / chemistry*
  • Protein Structure, Tertiary
  • Saccharomyces cerevisiae / chemistry*
  • Saccharomyces cerevisiae Proteins / chemistry*

Substances

  • Amyloid
  • Prions
  • Saccharomyces cerevisiae Proteins