In vitro and in vivo protective efficacies of antibodies that neutralize the RNA N-glycosidase activity of Shiga toxin 2

BMC Immunol. 2010 Mar 24:11:16. doi: 10.1186/1471-2172-11-16.

Abstract

Background: Shiga toxin 2 (Stx2), one of two Stx liberated by Stx-producing Escherichia coli, is composed of an A subunit monomer and a B subunit pentamer, and is directly linked with hemolytic uremic syndrome in children. The pentameric B subunit binds to its cell surface receptor Gb3 for toxin internalization, and the A subunit follows intracellular retrograde transport to the cytosol where its RNA N-glycosidase activity (RNA-NGA) shuts down the protein synthesis, and leads to cell death. The present study investigated the ability of 19 Stx2 A subunit-specific human monoclonal antibodies (HuMAbs) to neutralize the RNA-NGA, and the association this neutralizing activity with protection of HeLa cells and mice against Stx2-induced death.

Results: The HuMAbs that were stronger inhibitors of RNA-NGA were also better at neutralizing Stx2 mediated HeLa cell death, and those that were weaker inhibitors of RNA-NGA activity were also weaker in protecting HeLa cells. These results suggest that the ability of an A subunit-specific antibody to block the RNA-NGA of the toxin is directly related to its ability to neutralize Stx2-mediated HeLa cell death. However, with the exception of the best RNA-NGA blocking antibodies 5C12 and 2F10, the efficacies of antibody neutralization of RNA-NGA of Stx2 did not correlate with their in vivo protective efficacies. The HuMAb 6C3, which neutralized RNA N-glycosidase activity of Stx2 less effectively than the HuMAbs 6D8 and 6B7, protected 100% of the mice against Stx2 challenge at 50 microg/mouse dose. In contrast, the HuMAbs 6D8 and 6B7, which neutralized RNA N-glycosidase activity of Stx2 more effectively than 6C3, protected 20% and 0% mice at that dose, respectively.

Conclusions: The neutralization efficiency of the RNA-NGA of Stx2 by A subunit-specific antibodies correlate strongly with their abilities to protect HeLa cells against Stx2-mediated toxicity but only the strongest RNA-NGA-neutralizing antibodies correlate very well with both protecting HeLa cells and mice against Stx2 challenge.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Antibodies, Monoclonal / immunology*
  • Antibodies, Monoclonal / pharmacology
  • Antibodies, Neutralizing / immunology*
  • Antibodies, Neutralizing / pharmacology
  • Blotting, Western
  • HeLa Cells
  • Humans
  • Mice
  • Ribosome Inactivating Proteins / antagonists & inhibitors*
  • Shiga Toxin 2 / antagonists & inhibitors*

Substances

  • Antibodies, Monoclonal
  • Antibodies, Neutralizing
  • Shiga Toxin 2
  • Ribosome Inactivating Proteins