The missing angular momentum of superconductors

J Phys Condens Matter. 2008 Jun 11;20(23):235233. doi: 10.1088/0953-8984/20/23/235233. Epub 2008 May 9.

Abstract

We point out that the Meissner effect, the process by which a superconductor expels magnetic field from its interior, represents an unsolved puzzle within the London-Bardeen-Cooper-Schrieffer theoretical framework used to describe the physics of conventional superconductors, because it appears to give rise to non-conservation of angular momentum. Possible ways to avoid this inconsistency within the conventional theory of superconductivity are argued to be far-fetched. Consequently, we argue that unless/until a consistent explanation is put forth, the existence of the Meissner effect represents an anomaly that casts doubt on the validity of the conventional framework. Instead, we point out that three elements of the unconventional theory of hole superconductivity (that are not part of the conventional theory) allow for a consistent explanation of the Meissner effect, namely: (i) that the charge distribution in superconductors is macroscopically inhomogeneous, (ii) that superconducting electrons reside in mesoscopic orbits of radius 2λ(L) (λ(L) = London penetration depth), and (iii) that spin-orbit coupling plays an essential role in superconductivity.