Multifunctional Surface Manipulation Using Orthogonal Click Chemistry

Langmuir. 2016 Jul 5;32(26):6600-5. doi: 10.1021/acs.langmuir.6b01591. Epub 2016 Jun 21.

Abstract

Polymer brushes are excellent substrates for the covalent immobilization of a wide variety of molecules due to their unique physicochemical properties and high functional group density. By using reactive microcapillary printing, poly(pentafluorophenyl acrylate) brushes with rapid kinetic rates toward aminolysis can be partially patterned with other click functionalities such as strained cyclooctyne derivatives and sulfonyl fluorides. This trireactive surface can then react locally and selectively in a one pot reaction via three orthogonal chemistries at room temperature: activated ester aminolysis, strain promoted azide-alkyne cycloaddition, and sulfur(VI) fluoride exchange, all of which are tolerant of ambient moisture and oxygen. Furthermore, we demonstrate that these reactions can also be used to create areas of morphologically distinct surface features on the nanoscale, by inducing buckling instabilities in the films and the grafting of nanoparticles. This approach is modular, and allows for the development of highly complex surface motifs patterned with different chemistry and morphology.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.