A Comparative Modeling Analysis of Risk-Based Lung Cancer Screening Strategies

J Natl Cancer Inst. 2020 May 1;112(5):466-479. doi: 10.1093/jnci/djz164.

Abstract

Background: Risk-prediction models have been proposed to select individuals for lung cancer screening. However, their long-term effects are uncertain. This study evaluates long-term benefits and harms of risk-based screening compared with current United States Preventive Services Task Force (USPSTF) recommendations.

Methods: Four independent natural history models were used to perform a comparative modeling study evaluating long-term benefits and harms of selecting individuals for lung cancer screening through risk-prediction models. In total, 363 risk-based screening strategies varying by screening starting and stopping age, risk-prediction model used for eligibility (Bach, PLCOm2012, or Lung Cancer Death Risk Assessment Tool [LCDRAT]), and risk threshold were evaluated for a 1950 US birth cohort. Among the evaluated outcomes were percentage of individuals ever screened, screens required, lung cancer deaths averted, life-years gained, and overdiagnosis.

Results: Risk-based screening strategies requiring similar screens among individuals ages 55-80 years as the USPSTF criteria (corresponding risk thresholds: Bach = 2.8%; PLCOm2012 = 1.7%; LCDRAT = 1.7%) averted considerably more lung cancer deaths (Bach = 693; PLCOm2012 = 698; LCDRAT = 696; USPSTF = 613). However, life-years gained were only modestly higher (Bach = 8660; PLCOm2012 = 8862; LCDRAT = 8631; USPSTF = 8590), and risk-based strategies had more overdiagnosed cases (Bach = 149; PLCOm2012 = 147; LCDRAT = 150; USPSTF = 115). Sensitivity analyses suggest excluding individuals with limited life expectancies (<5 years) from screening retains the life-years gained by risk-based screening, while reducing overdiagnosis by more than 65.3%.

Conclusions: Risk-based lung cancer screening strategies prevent considerably more lung cancer deaths than current recommendations do. However, they yield modest additional life-years and increased overdiagnosis because of predominantly selecting older individuals. Efficient implementation of risk-based lung cancer screening requires careful consideration of life expectancy for determining optimal individual stopping ages.

Publication types

  • Comparative Study
  • Research Support, N.I.H., Extramural

MeSH terms

  • Aged
  • Aged, 80 and over
  • Early Detection of Cancer
  • Female
  • Humans
  • Lung Neoplasms / diagnosis*
  • Lung Neoplasms / epidemiology*
  • Male
  • Middle Aged
  • Models, Statistical
  • Risk Assessment
  • Risk Factors
  • Smoking / epidemiology