ATF4-Mediated Upregulation of REDD1 and Sestrin2 Suppresses mTORC1 Activity during Prolonged Leucine Deprivation

J Nutr. 2020 May 1;150(5):1022-1030. doi: 10.1093/jn/nxz309.

Abstract

Background: The protein kinase target of rapamycin (mTOR) in complex 1 (mTORC1) is activated by amino acids and in turn upregulates anabolic processes. Under nutrient-deficient conditions, e.g., amino acid insufficiency, mTORC1 activity is suppressed and autophagy is activated. Intralysosomal amino acids generated by autophagy reactivate mTORC1. However, sustained mTORC1 activation during periods of nutrient insufficiency would likely be detrimental to cellular homeostasis. Thus, mechanisms must exist to prevent amino acids released by autophagy from reactivating the kinase.

Objective: The objective of the present study was to test whether mTORC1 activity is inhibited during prolonged leucine deprivation through ATF4-dependent upregulation of the mTORC1 suppressors regulated in development and DNA damage response 1 (REDD1) and Sestrin2.

Methods: Mice (8 wk old; C57Bl/6 × 129SvEV) were food deprived (FD) overnight and one-half were refed the next morning. Mouse embryo fibroblasts (MEFs) deficient in ATF4, REDD1, and/or Sestrin2 were deprived of leucine for 0-16 h. mTORC1 activity and ATF4, REDD1, and Sestrin2 expression were assessed in liver and cell lysates.

Results: Refeeding FD mice resulted in activation of mTORC1 in association with suppressed expression of both REDD1 and Sestrin2 in the liver. In cells in culture, mTORC1 exhibited a triphasic response to leucine deprivation, with an initial suppression followed by a transient reactivation from 2 to 4 h and a subsequent resuppression after 8 h. Resuppression occurred concomitantly with upregulated expression of ATF4, REDD1, and Sestrin2. However, in cells lacking ATF4, neither REDD1 nor Sestrin2 expression was upregulated by leucine deprivation, and resuppression of mTORC1 was absent. Moreover, in cells lacking either REDD1 or Sestrin2, mTORC1 resuppression was attenuated, and in cells lacking both proteins resuppression was further blunted.

Conclusions: The results suggest that leucine deprivation upregulates expression of both REDD1 and Sestrin2 in an ATF4-dependent manner, and that upregulated expression of both proteins is involved in resuppression of mTORC1 during prolonged leucine deprivation.

Keywords: ATF4; REDD1; Sestrin2; leucine; mTOR.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Activating Transcription Factor 4 / genetics
  • Activating Transcription Factor 4 / metabolism*
  • Animals
  • Gene Expression Regulation / drug effects
  • Leucine / administration & dosage*
  • Leucine / deficiency*
  • Mechanistic Target of Rapamycin Complex 1 / genetics
  • Mechanistic Target of Rapamycin Complex 1 / metabolism*
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Peroxidases / genetics
  • Peroxidases / metabolism*
  • Transcription Factors / genetics
  • Transcription Factors / metabolism*

Substances

  • Atf4 protein, mouse
  • Ddit4 protein, mouse
  • Transcription Factors
  • Activating Transcription Factor 4
  • Peroxidases
  • Sesn2 protein, mouse
  • Mechanistic Target of Rapamycin Complex 1
  • Leucine