Tracking the homeostasis of second messenger cyclic-di-GMP in bacteria

Biophys Rev. 2020 Jun;12(3):719-730. doi: 10.1007/s12551-020-00636-1. Epub 2020 Feb 15.

Abstract

Cyclic-di-GMP (c-di-GMP) is an important second messenger in bacteria which regulates the bacterial transition from motile to sessile phase and also plays a major role in processes such as cell division, exopolysaccharide synthesis, and biofilm formation. Due to its crucial role in dictating the bacterial phenotype, the synthesis and hydrolysis of c-di-GMP is tightly regulated via multiple mechanisms. Perturbing the c-di-GMP homeostasis affects bacterial growth and survival, so it is necessary to understand the underlying mechanisms related to c-di-GMP metabolism. Most techniques used for estimating the c-di-GMP concentration lack single-cell resolution and do not provide information about any heterogeneous distribution of c-di-GMP inside cells. In this review, we briefly discuss how the activity of c-di-GMP metabolising enzymes, particularly bifunctional proteins, is modulated to maintain c-di-GMP homeostasis. We further highlight how fluorescence-based methods aid in understanding the spatiotemporal regulation of c-di-GMP signalling. Finally, we discuss the blind spots in our understanding of second messenger signalling and outline how they can be addressed in the future.

Keywords: Biofilm; Biosensor; C-di-GMP; FRET; Riboswitch; Second messenger.

Publication types

  • Review