ORBIT-RT: A Real-Time, Open Platform for Knowledge-Based Quality Control of Radiotherapy Treatment Planning

JCO Clin Cancer Inform. 2021 Jan:5:134-142. doi: 10.1200/CCI.20.00093.

Abstract

Purpose: Access to knowledge-based treatment plan quality control has been hindered by the complexity of developing models and integration with different treatment planning systems (TPS). Online Real-time Benchmarking Information Technology for RadioTherapy (ORBIT-RT) provides a free, web-based platform for knowledge-based dose estimation that can be used by clinicians worldwide to benchmark the quality of their radiotherapy plans.

Materials and methods: The ORBIT-RT platform was developed to satisfy four primary design criteria: web-based access, TPS independence, Health Insurance Portability and Accountability Act compliance, and autonomous operation. ORBIT-RT uses a cloud-based server to automatically anonymize a user's Digital Imaging and Communications in Medicine for RadioTherapy (DICOM-RT) file before upload and processing of the case. From there, ORBIT-RT uses established knowledge-based dose-volume histogram (DVH) estimation methods to autonomously create DVH estimations for the uploaded DICOM-RT. ORBIT-RT performance was evaluated with an independent validation set of 45 volumetric modulated arc therapy prostate plans with two key metrics: (i) accuracy of the DVH estimations, as quantified by their error, DVHclinical - DVHprediction and (ii) time to process and display the DVH estimations on the ORBIT-RT platform.

Results: ORBIT-RT organ DVH predictions show < 1% bias and 3% error uncertainty at doses > 80% of prescription for the prostate validation set. The ORBIT-RT extensions require 3.0 seconds per organ to analyze. The DICOM upload, data transfer, and DVH output display extend the entire system workflow to 2.5-3 minutes.

Conclusion: ORBIT-RT demonstrated fast and fully autonomous knowledge-based feedback on a web-based platform that takes only anonymized DICOM-RT as input. The ORBIT-RT system can be used for real-time quality control feedback that provides users with objective comparisons for final plan DVHs.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Benchmarking*
  • Humans
  • Information Technology*
  • Knowledge Bases
  • Male
  • Prospective Studies
  • Quality Control
  • Radiotherapy Dosage
  • Radiotherapy Planning, Computer-Assisted
  • United States