Temporal stability of the ventral attention network and general cognition along the Alzheimer's disease spectrum

Neuroimage Clin. 2021:31:102726. doi: 10.1016/j.nicl.2021.102726. Epub 2021 Jun 14.

Abstract

Understanding the interrelationships of clinical manifestations of Alzheimer's disease (AD) and functional connectivity (FC) as the disease progresses is necessary for use of FC as a potential neuroimaging biomarker. Degradation of resting-state networks in AD has been observed when FC is estimated over the entire scan, however, the temporal dynamics of these networks are less studied. We implemented a novel approach to investigate the modular structure of static (sFC) and time-varying (tvFC) connectivity along the AD spectrum in a two-sample Discovery/Validation design (n = 80 and 81, respectively). Cortical FC networks were estimated across 4 diagnostic groups (cognitively normal, subjective cognitive decline, mild cognitive impairment, and AD) for whole scan (sFC) and with sliding window correlation (tvFC). Modularity quality (across a range of spatial scales) did not differ in either sFC or tvFC. For tvFC, group differences in temporal stability within and between multiple resting state networks were observed; however, these differences were not consistent between samples. Correlation analyses identified a relationship between global cognition and temporal stability of the ventral attention network, which was reproduced in both samples. While the ventral attention system has been predominantly studied in task-evoked designs, the relationship between its intrinsic dynamics at-rest and general cognition along the AD spectrum highlights its relevance regarding clinical manifestation of the disease.

Keywords: Alzheimer’s disease; Dynamic connectivity; Functional connectivity; Modularity; Networks.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / diagnostic imaging
  • Cognition
  • Cognitive Dysfunction* / diagnostic imaging
  • Humans
  • Magnetic Resonance Imaging
  • Rest