DNA methylation-based signature of CD8+ tumor-infiltrating lymphocytes enables evaluation of immune response and prognosis in colorectal cancer

J Immunother Cancer. 2021 Sep;9(9):e002671. doi: 10.1136/jitc-2021-002671.

Abstract

Background: Tumor-infiltrating lymphocytes (TILs), especially CD8+ TILs, can be used for predicting immunotherapy responsiveness and survival outcome. However, the evaluation of CD8+ TILs currently relies on histopathological methodology with high variability. We therefore aimed to develop a DNA methylation signature for CD8+ TILs (CD8+ MeTIL) that could evaluate immune response and prognosis in colorectal cancer (CRC).

Methods: A CD8+ MeTIL signature score was constructed by using CD8+ T cell-specific differentially methylated positions (DMPs) that were identified from Illumina EPIC methylation arrays. Immune cells, colon epithelial cells, and two CRC cohorts (n=282 and 335) were used to develop a PCR-based assay for quantitative analysis of DNA methylation at single-base resolution (QASM) to determine CD8 + MeTIL signature score.

Results: Three CD8+ T cell-specific DMPs were identified to construct the CD8+ MeTIL signature score, which showed a dramatic discriminability between CD8+ T cells and other cells. The QASM assay we developed for CD8+ MeTIL markers could measure CD8+ TILs distributions in a fully quantitative, accurate, and simple manner. The CD8+ MeTIL score determined by QASM assay showed a strong association with histopathology-based CD8+ TIL counts and a gene expression-based immune marker. Furthermore, the low CD8+ MeTIL score (enriched CD8+ TILs) was associated with MSI-H tumors and predicted better survival in CRC cohorts.

Conclusions: This study developed a quantitative DNA methylation-based signature that was reliable to evaluate CD8+ TILs and prognosis in CRC. This approach has the potential to be a tool for investigations on CD8+ TILs and a biomarker for therapeutic approaches, including immunotherapy.

Keywords: CD8-positive T-lymphocytes; biomarkers; gastrointestinal neoplasms; genetic markers; lymphocytes; tumor; tumor-infiltrating.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biomarkers, Tumor / metabolism*
  • CD8-Positive T-Lymphocytes / metabolism*
  • Colorectal Neoplasms / immunology*
  • DNA Methylation / immunology*
  • Humans
  • Immunity / immunology*
  • Lymphocytes, Tumor-Infiltrating / immunology*
  • Prognosis

Substances

  • Biomarkers, Tumor