Intrinsic mechanisms underlying the highly efficient removal of bacterial endotoxin and related risks in tailwater by dielectric barrier discharge plasma

Water Res. 2022 Nov 1:226:119214. doi: 10.1016/j.watres.2022.119214. Epub 2022 Oct 6.

Abstract

Endotoxin is widely present in aquatic environments and can induce adverse health effects. In this study, dielectric barrier discharge (DBD) plasma was used to remove bacterial endotoxin from the tailwater of a wastewater treatment plant. The removal efficiency of total endotoxin activity was up to 92% with low electrical energy consumption (0.43 J mL-1%-1) after 180 s of the DBD plasma treatment, which was better than other previously reported methods. In the early stage of DBD plasma oxidation, the expression of genes related to cell morphology and bacterial antioxidant enzyme synthesis was distinctly down-regulated, suggesting that cell integrity was destroyed, leading to endotoxin release into the solution. Additionally, endotoxin synthesis in the cells was suppressed. The endotoxin in the solution was effectively removed by ·OH, 1O2, and O2·-generated by the DBD plasma, with second-order reaction rates of 2.69 × 1010, 2.20 × 107, and 8.60 × 108 mol-1 L s-1, respectively. The core toxic component of endotoxin (lipid A) was attacked by these strong oxidative species, generating smaller molecular fragments with low toxicity. Consequently, the inflammatory factors IL-6, IL-β, and TNF-α of endotoxin decreased by 3.4-4.8 folds after the DBD plasma treatment, implying that the health risks posed by endotoxin were greatly reduced. This study revealed the intrinsic mechanisms of the highly efficient removal of bacterial endotoxin by DBD plasma oxidation.

Keywords: Bacterial endotoxin; Discharge plasma; Inflammatory factor; Molecular mechanisms; Pathogens.

MeSH terms

  • Bacteria
  • Endotoxins
  • Water Purification* / methods

Substances

  • Endotoxins