NMR-pseudoenergy approach to the solution structure of acyl carrier protein

Biochemistry. 1987 Jul 28;26(15):4652-60. doi: 10.1021/bi00389a010.

Abstract

A method for protein structure determination from two-dimensional NMR cross-relaxation data is presented and explored by using short amino acid segments from acyl carrier protein as a test case. The method is based on a molecular mechanics program and incorporates NMR distance constraints in the form of a pseudoenergy term that accurately reflects the distance-dependent precision of NMR cross-relaxation data. When it is used in an indiscriminant fashion, the method has a tendency to produce structures representing local energy minima near starting structures, rather than structures representing a global energy minimum. However, stepwise inclusion of energy terms, beginning with a function heavily weighted by backbone distance constraints, appears to simplify the potential energy surface to a point where convergence to a common backbone structure from a variety of starting structures is possible. In the case of the segment from residues 3 to 15 in acyl carrier protein, a nearly perfect alpha-helix is produced starting with a linear chain, an alpha-helical chain, or a chain having residues with alternating linear and alpha-helical backbone torsional angles. In the case of the segment from residues 26 to 36 a structure having a right-handed loop is produced.

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acyl Carrier Protein*
  • Magnetic Resonance Spectroscopy / methods
  • Models, Molecular
  • Protein Conformation
  • Solutions

Substances

  • Acyl Carrier Protein
  • Solutions