Inner pore hydration free energy controls the activation of big potassium channels

Biophys J. 2023 Apr 4;122(7):1158-1167. doi: 10.1016/j.bpj.2023.02.005. Epub 2023 Feb 10.

Abstract

Hydrophobic gating is an emerging mechanism in regulation of protein ion channels where the pore remains physically open but becomes dewetted to block ion permeation. Atomistic molecular dynamics simulations have played a crucial role in understanding hydrophobic gating by providing the molecular details to complement mutagenesis and structural studies. However, existing studies rely on direct simulations and do not quantitatively describe how the sequence and structural changes may control the delicate liquid-vapor equilibrium of confined water in the pore of the channel protein. To address this limitation, we explore two enhanced sampling methods, namely metadynamics and umbrella sampling, to derive free-energy profiles of pore hydration in both the closed and open states of big potassium (BK) channels, which are important in cardiovascular and neural systems. It was found that metadynamics required substantially longer sampling times and struggled to generate stably converged free-energy profiles due to the slow dynamics of cooperative pore water diffusion even in the barrierless limit. Using umbrella sampling, well-converged free-energy profiles can be readily generated for the wild-type BK channels as well as three mutants with pore-lining mutations experimentally known to dramatically perturb the channel gating voltage. The results show that the free energy of pore hydration faithfully reports the gating voltage of the channel, providing further support for hydrophobic gating in BK channels. Free-energy analysis of pore hydration should provide a powerful approach for quantitative studies of how protein sequence, structure, solution conditions, and/or drug binding may modulate hydrophobic gating in ion channels.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Ion Channel Gating*
  • Ion Channels / chemistry
  • Large-Conductance Calcium-Activated Potassium Channels*
  • Molecular Dynamics Simulation
  • Water

Substances

  • Large-Conductance Calcium-Activated Potassium Channels
  • Ion Channels
  • Water