Pathological beige remodeling induced by cancer cachexia depends on the disease severity and involves mainly the trans-differentiation of mature white adipocytes

bioRxiv [Preprint]. 2023 Sep 18:2023.09.18.558327. doi: 10.1101/2023.09.18.558327.

Abstract

In cancer associated cachexia (CAC), white adipose tissue undergoes morphofunctional and inflammatory changes that lead to tissue dysfunction and remodeling. In addition to metabolic changes in white adipose tissues (WAT), adipose tissue atrophy has been implicated in several clinical complications and poor prognoses associated with cachexia. Adipocyte atrophy may be associated with increased beige remodeling in human CAC as evidenced by the "beige remodeling" observed in preclinical models of CAC. Even though beige remodeling is associated with CAC-induced WAT dysfunction, there are still some open questions regarding their cellular origins. In this study, we investigated the development of beige remodeling in CAC from a broader perspective. In addition, we used a grading system to identify the scAT as being affected by mice weight loss early and intensely. Using different in vitro and ex-vivo techniques, we demonstrated that Lewis LLC1 cells can induce a switch from white to beige adipocytes, which is specific to this type of tumor cell. During the more advanced stages of CAC, beige adipocytes are mainly formed from the transdifferentiation of cells. According to our results, humanizing the CAC classification system is an efficient approach to defining the onset of the syndrome in a more homogeneous manner. Pathological beige remodeling occurred early in the disease course and exhibited phenotypic characteristics specific to LLC cells' secretomes. Developing therapeutic strategies that recruit beige adipocytes in vivo may be better guided by an understanding of the cellular origins of beige adipocytes emitted by CAC.

Keywords: adipose tissue remodeling; browning; cancer cachexia; pre-clinical models; transdifferentiation.

Publication types

  • Preprint