Epithelial N-methyl-D-aspartate (NMDA) receptors mediate renal vasodilation by affecting kidney autoregulation

bioRxiv [Preprint]. 2023 Dec 6:2023.12.04.569973. doi: 10.1101/2023.12.04.569973.

Abstract

Background: N-methyl-D-aspartate receptor (NMDAR) are amino acid receptors that are well studied in brain physiology; however, their role in kidney is poorly understood. Nonetheless, NMDAR inhibitors can increase serum K+ and reduce GFR, which suggests they have an important physiological role in the kidney. We hypothesized that NMDARs in the distal nephron induce afferent-arteriole vasodilation through the vasodilator mechanism connecting-tubule-glomerular feedback (CNTGF) that involves ENaC activation.

Methods and results: Using a tubule-specific transcriptome database combined with molecular biology and microscopy techniques, we showed kidney expression of NMDAR subunits along the nephron and specifically in ENaC-positive cells. This receptor is expressed in both male and female mice, with higher abundance in females (p=0.02). Microperfusing NMDAR agonists into the connecting tubule induced afferent-arteriole vasodilation (EC50 10.7 vs. 24.5 mM; p<0.001) that was blunted or eliminated with the use of NMDAR blocker MK-801 or with the ENaC inhibitor Benzamil, indicating a dependence on CNTGF of the NMDAR-induced vasodilation. In vivo, we confirmed this CNTGF-associated vasodilation using kidney micropuncture (Stop-flow pressure 37.9±2.6 vs. 28.6±1.9 mmHg, NMDAR agonist vs vehicle; p<0.01). We explored NMDAR and ENaC channel interaction by using mpkCCD cells and split-open connecting tubules. We observed increased amiloride-sensitive current following NMDAR activation that was prevented by MK-801 (1.14 vs. 0.4 μAmp; p=0.03). In split-open tubules, NMDAR activation increased ENaC activity (Npo Vehicle vs. NMDA; p=0.04).

Conclusion: NMDARs are expressed along the nephron, including ENaC-positive cells, with higher expression in females. Epithelial NMDAR mediates renal vasodilation through the connecting-tubule-glomerular feedback, by increasing ENaC activity.

Keywords: Acute Kidney Injury; Connecting tubule-glomerular feedback; ENaC; Kidney Autoregulation; NMDA receptors.

Publication types

  • Preprint