Incorporating longitudinal history of risk factors into atherosclerotic cardiovascular disease risk prediction using deep learning

Sci Rep. 2024 Jan 31;14(1):2554. doi: 10.1038/s41598-024-51685-5.

Abstract

It is increasingly clear that longitudinal risk factor levels and trajectories are related to risk for atherosclerotic cardiovascular disease (ASCVD) above and beyond single measures. Currently used in clinical care, the Pooled Cohort Equations (PCE) are based on regression methods that predict ASCVD risk based on cross-sectional risk factor levels. Deep learning (DL) models have been developed to incorporate longitudinal data for risk prediction but its benefit for ASCVD risk prediction relative to the traditional Pooled Cohort Equations (PCE) remain unknown. Our study included 15,565 participants from four cardiovascular disease cohorts free of baseline ASCVD who were followed for adjudicated ASCVD. Ten-year ASCVD risk was calculated in the training set using our benchmark, the PCE, and a longitudinal DL model, Dynamic-DeepHit. Predictors included those incorporated in the PCE: sex, race, age, total cholesterol, high density lipid cholesterol, systolic and diastolic blood pressure, diabetes, hypertension treatment and smoking. The discrimination and calibration performance of the two models were evaluated in an overall hold-out testing dataset. Of the 15,565 participants in our dataset, 2170 (13.9%) developed ASCVD. The performance of the longitudinal DL model that incorporated 8 years of longitudinal risk factor data improved upon that of the PCE [AUROC: 0.815 (CI 0.782-0.844) vs 0.792 (CI 0.760-0.825)] and the net reclassification index was 0.385. The brier score for the DL model was 0.0514 compared with 0.0542 in the PCE. Incorporating longitudinal risk factors in ASCVD risk prediction using DL can improve model discrimination and calibration.

MeSH terms

  • Atherosclerosis* / epidemiology
  • Cardiovascular Diseases* / epidemiology
  • Cardiovascular Diseases* / etiology
  • Cholesterol
  • Cross-Sectional Studies
  • Deep Learning*
  • Humans
  • Risk Assessment / methods
  • Risk Factors

Substances

  • Cholesterol