Plasma Microbial Cell-Free DNA Sequencing for Pathogen Detection and Quantification in Children With Musculoskeletal Infections

J Pediatric Infect Dis Soc. 2024 Mar 19;13(3):211-219. doi: 10.1093/jpids/piae012.

Abstract

Background: Nearly half of all pediatric musculoskeletal infections (MSKIs) are culture negative. Plasma microbial cell-free DNA (mcfDNA) sequencing is noninvasive and not prone to the barriers of culture. We evaluated the performance of plasma mcfDNA sequencing in identifying a pathogen, and examined the duration of pathogen detection in children with MSKIs.

Methods: We conducted a prospective study of children, aged 6 months to 18 years, hospitalized from July 2019 to May 2022 with MSKIs, in whom we obtained serial plasma mcfDNA sequencing samples and compared the results with cultures.

Results: A pathogen was recovered by culture in 23 of 34 (68%) participants, and by initial mcfDNA sequencing in 25 of 31 (81%) participants. Multiple pathogens were detected in the majority (56%) of positive initial samples. Complete concordance with culture (all organisms accounted for by both methods) was 32%, partial concordance (at least one of the same organism(s) identified by both methods) was 36%, and discordance was 32%. mcfDNA sequencing was more likely to show concordance (complete or partial) if obtained prior to a surgical procedure (82%), compared with after (20%), (RR 4.12 [95% CI 1.25, 22.93], p = .02). There was no difference in concordance based on timing of antibiotics (presample antibiotics 60% vs no antibiotics 75%, RR 0.8 [95% CI 0.40, 1.46], p = .65]). mcfDNA sequencing was positive in 67% of culture-negative infections and detected a pathogen for a longer interval than blood culture (median 2 days [IQR 1, 6 days] vs 1 day [1, 1 day], p < .01).

Conclusions: Plasma mcfDNA sequencing may be useful in culture-negative pediatric MSKIs if the sample is obtained prior to surgery. However, results must be interpreted in the appropriate clinical context as multiple pathogens are frequently detected supporting the need for diagnostic stewardship.

Keywords: diagnostics; microbial cell-free DNA sequencing; musculoskeletal infections; osteomyelitis; pediatrics; septic arthritis.

MeSH terms

  • Anti-Bacterial Agents / therapeutic use
  • Blood Culture*
  • Child
  • High-Throughput Nucleotide Sequencing*
  • Humans
  • Prospective Studies
  • Sequence Analysis, DNA

Substances

  • Anti-Bacterial Agents