Paracrine Signaling by Pancreatic Islet Cilia

Curr Opin Endocr Metab Res. 2024 Jun:35:100505. doi: 10.1016/j.coemr.2024.100505. Epub 2024 Feb 20.

Abstract

The primary cilium is a sensory and signaling organelle present on most pancreatic islet endocrine cells, where it receives and interprets a wide range of intra-islet chemical cues including hormones, peptides, and neurotransmitters. The ciliary membrane possesses a molecular composition distinct from the plasma membrane, with enrichment of signaling mediators including G protein-coupled receptors (GPCRs), tyrosine kinase family receptors, membrane transporters and others. When activated, these membrane proteins interact with ion channels and adenylyl cyclases to trigger local Ca2+ and cAMP activity and transmit signals to the cell body. Here we review evidence supporting the emerging model in which primary cilia on pancreatic islet cells play a central role in the intra-islet communication network and discuss how changes in cilia-mediated paracrine function in islet cells might lead to diabetes.