MANIPULATING MITOCHONDRIAL REACTIVE OXYGEN SPECIES ALTERS SURVIVAL IN UNEXPECTED WAYS IN A DROSOPHILA MODEL OF NEURODEGENERATION

bioRxiv [Preprint]. 2024 Mar 29:2024.03.25.586603. doi: 10.1101/2024.03.25.586603.

Abstract

Reactive oxygen species (ROS) are associated with aging and neurodegeneration, but the significance of this association remains obscure. Here, using a Drosophila model of age-related neurodegeneration, we probe this relationship in the pathologically relevant tissue, the brain, by quantifying three specific mitochondrial ROS and manipulating these redox species pharmacologically. Our goal is to ask whether pathology-associated changes in redox state are detrimental for survival, whether they may be beneficial responses, or whether they are simply covariates of pathology that do not alter viability. We find, surprisingly, that increasing mitochondrial H2O2 correlates with improved survival. We also find evidence that drugs that alter the mitochondrial glutathione redox potential modulate survival primarily through the compensatory effects they induce rather than through their direct effects on the final mitochondrial glutathione redox potential per se. We also find that the response to treatment with a redox-altering drug varies dramatically depending on the age at which the drug is administered, the duration of the treatment, and the genotype of the individual receiving the drug. These data have important implications for the design and interpretation of studies investigating the effect of redox state on health and disease as well as on efforts to modify the redox state to achieve therapeutic goals.

Keywords: Cdk5; Mitochondria; Neurodegeneration; Reactive oxygen species (ROS).

Publication types

  • Preprint