In-vivo 3-dimensional spine and lower body gait symmetry analysis in healthy individuals

Heliyon. 2024 Mar 22;10(7):e28345. doi: 10.1016/j.heliyon.2024.e28345. eCollection 2024 Apr 15.

Abstract

Background: Numerous research studies have delved into the biomechanics of walking, focusing on the spine and lower extremities. However, understanding the symmetry of walking in individuals without health issues poses a challenge, as those with normal mobility may exhibit uneven movement patterns due to inherent functional differences between their left and right limbs. The goal of this study is to examine the three-dimensional kinematics of gait symmetry in the spine and lower body during both typical and brisk overground walking in healthy individuals. The analysis will utilize statistical methods and symmetry index approaches. Furthermore, the research aims to investigate whether factors such as gender and walking speed influence gait symmetry.

Methods: Sixty young adults in good health, comprising 30 males and 30 females, underwent motion capture recordings while engaging in both normal and fast overground walking. The analysis focused on interlimb comparisons and corresponding assessments of side-specific spine and pelvis motions.

Results: Statistical Parametric Mapping (SPM) predominantly revealed gait symmetries between corresponding left and right motions in the spine, pelvis, hip, knee, and ankle during both normal and fast overground walking. Notably, both genders exhibited asymmetric pelvis left-right obliquity, with women and men showing an average degree of asymmetry between sides of 0.9 ± 0.1° and 1.5 ± 0.1°, respectively. Furthermore, the analysis suggested that neither sex nor walking speed appeared to exert influence on the 3D kinematic symmetry of the spine, pelvis, and lower body in healthy individuals during gait. While the maximum normalized symmetry index (SInorm) values for the lower thorax, upper lumbar, lower lumbar, pelvis, hip, knee, and ankle displayed significant differences between sexes and walking speeds for specific motions, no interaction between sex and walking speed was observed.

Significance: The findings underscore the potential disparities in data interpretations between the two approaches. While SPM discerns temporal variations in movement, these results offer valuable insights that may enhance our comprehension of gait symmetry in healthy individuals, surpassing the limitations of straightforward discrete parameters like the maximum SInorm. The information gleaned from this study could serve as reference indicators for diagnosing and evaluating abnormal gait function.

Keywords: Gait symmetry; Lower body kinematics; Overground; Sex; Speed; Spine kinematics; Statistical parametric mapping; Symmetry index; Walking.