An automated multi-layer perceptron discriminative neural network based on Bayesian optimization achieves high-precision one-source single-snapshot direction-of-arrival estimation

Sci Rep. 2024 May 5;14(1):10300. doi: 10.1038/s41598-024-60798-w.

Abstract

This paper proposes an innovative global solution which is a pioneering work applying automated machine learning algorithms to remarkable precision sparse underwater direction-of-arrival (DOA) estimation that views the subaquatic sparse-sampling DOA estimation problem as a classification prediction task. The proposed solution, termed automated multi-layer perceptron discriminative neural network (AutoMPDNN), is built upon a Bayesian optimization framework. AutoMPDNN transforms sparsely sampled time-domain signals into the complex domain, preserving essential components in a one-source single-snapshot scenario. Leveraging Bayesian optimization principles, the algorithm embeds necessary hyperparameters into the loss function, effectively defining it as a maximum likelihood problem using the upper confidence bound function and incorporating sparse signal features. We also explore the model space architecture and introduce variants of AutoMPDNN, denoted as AutoMPDNNs_ln (n = 2,3,4). Through a series of plane wave simulation experiments, it is demonstrated that AutoMPDNN achieves the highest prediction performance for one-source single-snapshot scenarios compared to classical DOA estimation algorithms that incorporate sparse representation approaches, as well as contemporary deep learning DOA methods under varying conditions.