Eigen microstates in self-organized criticality

Phys Rev E. 2024 Apr;109(4-1):044130. doi: 10.1103/PhysRevE.109.044130.

Abstract

We employ the eigen microstates approach to explore the self-organized criticality (SOC) in two celebrated sandpile models, namely the BTW model and the Manna model. In both models, phase transitions from the absorbing state to the critical state can be understood by the emergence of dominant eigen microstates with significantly increased weights. Spatial eigen microstates of avalanches can be uniformly characterized by a linear system size rescaling. The first temporal eigen microstates reveal scaling relations in both models. Furthermore, by finite-size scaling analysis of the first eigen microstates, we numerically estimate critical exponents, i.e., sqrt[σ_{0}w_{1}]/v[over ̃]_{1}∝L^{D} and v[over ̃]_{1}∝L^{D(1-τ_{s})/2}. Our findings could provide profound insights into eigen microstates of the universality and phase transition in nonequilibrium complex systems governed by self-organized criticality.